
International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 646
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Optimizing Time-multiplexing Raster Cellular Neural Network simulator
using genetic algorithms with RK4(2),RK4(3) and RK 6(4)

O.H. Abdelwahed, M. El-Sayed Wahed and O. Mohamed Eldaken
Department of Computer Science

Faculty of Computers and Information
Suez Canal University

EGYPT
E-mail: mewahed@yahoo.com, osama.abdelwahed@gmail.com

Abstract - This paper presents proper CNN templates for edge detection in image processing. Training of
CNN is done by using genetic algorithm. In this research, a versatile algorithm for simulating CNN arrays
and time multiplexing is implemented using numerical integration algorithms; RK4(2), RK4(3) and RK6(4).
The approach, time-multiplexing simulation, plays a pivotal role in the area of simulating hardware models
and testing hardware implementations of CNN. Owing to hardware limitations in practical sense, it is not
possible to have a one-one mapping between the CNN hardware processors and all the pixels of the image.
The simulator is capable of performing CNN simulations for any size of input image, thus a powerful tool for
researchers investigating potential applications of CNN.

Key-words:- time multiplexing Cellular neural networks, genetic algorithms, RK4(2), RK4(3),and RK6(4)

1 Introduction
Most of the widely applied genetic cellular neural
networks fall into two main classes: (1) memoryless
cellular neural networks and (2) dynamical cellular
neural networks. As in Hopfield networks (HN) and
CNN, dynamical neural networks have usually been
designed as dynamical systems where the inputs are set to
some constant values and each trajectory approaches one
of the stable equilibrium points depending upon the
initial state. Cellular Neural Network is a large-scale non-
linear analog circuits which processes signals in real
time[2]. The network behavior of CNN depends on the
initial state of the cells activation, namely bias I and on
weights values of A and B matrices which are associated
with the connections inside the well-defined
neighborhood of each cell. There are many

approaches in estimation of A,B, I matrices. Here
we prefer genetic algorithm. Genetic algorithm is a
learning algorithm based on the mechanism of
natural selection and genetics, which have proved to
be effective in a number of applications. It works
with a binary coding of the parameter set, searches
from a number of points of the parameter space. It
uses only the cost function during the optimization,
it need not derivatives of the cost function or other
information. [16-22].
In this paper, we focus on edge detection which is
much significant in various application as virtual
reality, intelligent human-computer interface and
TV-conference, security system.[18,19,20]. First
step in edge detection is locating face and facial
features [18],[19]. Then, the detected edges have to

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 647
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

be normalized and recognized by specially designed
classifier. In this study, we find the facial features and
face region using CNN templates estimated by using
genetic algorithms.

2 Cellular Neural Networks
Like cellular automata, the CNN is made of a massive
aggregate of regularly spaced circuits clones, called cells,
which communicate with each other directly only through
nearest neighbors. In Figure 2, each cell is modeled as
squares. The adjacent cells can interact directly with each
other. Cells not directly connected together may affect
each other indirectly because of the propagation effects
of the continuous-time dynamics of cellular neural
networks. An example of a two-dimensional CNN is
shown in Figure 3. Now let us define the neighborhood of
C(i,j).
Definition : r-neighbourhood
The r-neighbourhood of a cell C(i,j) , in a cellular neural
network is defined by,

() (){ } { } }
)1(1;1

,max,,

NlMk

rjliklkCjiN r

≤≤≤≤

≤−−=

where r is a positive integer number.

Figure 3 shows neighborhoods of the C(i,j) cell (located
at the center and shaded) with r=1 and 2,respectively. To
show neighbourhood relations more clearly, the center
pixel is coloured as black and related pixels in brown in
Figure 3 and 4. Cells are multiple input-single output
nonlinear processors all described by one, or one among
several different, parametric functionals. A cell is
characterized by a state variable, that is generally not
observable as such outside the cell itself. It contains
linear and non-linear circuit elements such as linear
resistors, capacitors and non-linear controlled sources
(Figures 4 and 5).

Every cell is connected to other cells within a
neighborhood of itself. In this scheme, information
is only exchanged between neighbouring neurons
and this local information characteristic does not
prevent the capability of obtaining global
processing. The CNN is a dynamical system

operating in continuous or discrete time. A general
form of the cell dynamical equations may be stated
as follows:

()

dt

td
C xij = ()txij− +

()() () ()() () I
N

t
N

t uByA kl
ijkl

ljkikl
ijkl

ljki
rr

++ ∑∑
∈

−−
∈

−−
)()(

()
2
1

=tyij
() ()()11 −−+ tt xx ijij

 (2)

where x,y,u,I denote respectively cell state, output,
input, bias and j and k are cell indices. CNN
parameter values are assumed to be spaced-invariant
and the nonlinear function is chosen as piece-wise
linear. Since we use discrete 2-D images, Equation
(2) is rewritten as,

)1(+nxij
= ()nxij− +

()() () ()() () I
N

t
N

nt uByA kl
ijkl

ljkikl
ijkl

ljki
rr

++ ∑∑
∈

−−
∈

−−
)()(

)(

()
2
1

=nyij
() ()()11 −−+ nn xx ijij

 (3)

with A, B and I being cloning template matrices that
are identically repeated in the neighbourhood of
every neuron as,

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 648
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

)4(,

1,10,11,1

1,00,01,0

1,10,11,1

1,10,11,1

1,00,01,0

1,10,11,1

IB

A

bab
bbb
bbb
aaa
aaa
aaa

=

=

−−

−−

−−−−

−−

−−

−−−−

The network behaviour of CNN depends on the initial
state of the cells activation, namely bias I and on weights
values of A and B matrices which are associated with the
connections inside the well-defined neighbourhood of
each cell. CNN's are arrays of locally and regularly
interconnected neurons, or, cells, whose global
functionality are defined by a small number of
parameters (A,B, I) that specify the operation of the
component cells as well as the connection weights
between them. CNN can also be considered as a
nonlinear convolution with the template. Cells can be
characterized by a functional block diagram that is
typical of neural network theory: Figure 4 depicts a two-
stage functional block diagram of a cell, composed of a
generalized weighted sum (in general nonlinear with
memory) integration, output nonlinear
function/functional. Data can be fed to the CNN through
two different ports: initial conditions of the state and
proper input u. Bias values I may be used as a third port.
The network behaviour of CNN depends on the initial
state of the cells activation, namely bias I and on weights
values of A and B matrices which are associated with the
connections inside the well-defined neighbourhood of
each cell. CNN's are arrays of locally and regularly
interconnected neurons, or, cells, whose global
functionality are defined by a small number of
parameters (A,B, I) that specify the operation of the
component cells as well as the connection weights
between them. CNN can also be considered as a
nonlinear convolution with the template. Since the
introduction of Chua [2], CNN has attracted a lot of
attention. Not only from a theoretical point of view these
systems have a number of attractive properties, but
furthermore there are many well-known applications like

image processing, motion detection, pattern
recognition, simulation. The reduced number of
connections within a local neighbourhood, the
principle of cloning template etc., turn out to be
advantage of CNN's.

3 Behavioral Simulation
Recall that equation (1) is space invariant,
which means that A(i,j;k,l) = A(i-k,j-1) and
B(i,j;k,l) = B(i,k;,j,l) for all i,j,kl.
Therefore, the solution of the system of difference
equations can be seen as a convolution process
between the image and the CNN processors. The
basic approach is to imagine a square subimage area
centered at (x,y), with the subimage being the same
size of the templates involved in the simulation. The
center of this subimage is then moved from pixel to
pixel starting, say, at the top left comer and applying
the A and B templates at each location (x,y) to solve
the differential equation. This procedure is repeated
for each time step, for all the pixels. An instance of
this image scanning-processing is referred to as an
“iteration”. The processing stops when it is found
that the states of all CNN processors have
converged to steady-state values[2] and the outputs
of its neighbor cells are saturated, e.g. they have a
+1 value.
This whole simulating approach is referred to as
raster simulation. A simplified algorithm is
presented below for this approach. The part where
the integration is involved (i.e. calculation of the
next state) is explained in the Numerical Integration
Methods section.
In the following two subsections we will discuss
genetic algorithms and edge detection by CNN and
genetic algorithms.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 649
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

3.1 Genetic Algorithms
In the estimation of A.B. and I matrices of CNN, we use
genetic algorithms. Genetic algorithm is a learning
algorithm based on the mechanism of natural selection
and genetics, which have proved to be effective in a
number of applications. It works with a binary coding of
the parameter set, searches from a number of points of
the parameter space. It uses only the cost function during
the optimization, it need not derivatives of the cost
function or other information. [11,12]. Processes of
natural selection cause chromosomes that encode
successful structures to reproduce more often than those
that do not. In addition to reproduction, mutations may
cause the chromosomes of children to be different from
those of their biological parents, and crossing over
processes create different chromosomes in children by
changing the some parts of the parent chromosomes
between each other. Like nature, genetic algorithms solve
the problem of finding good chromosomes by
manipulating in the chromosomes blindly without any
knowledge about the problem they are solving.[12]. The
underlying principles of GA were first published by
Holland in1962, [13]. The mathematical framework was
developed in the 1960s and is presented in his pioneering
book in 1975 [14]. In optimization applications, they
have been used in many diverse fields such as function
optimization, image processing, the traveling salesperson
problem, system identification and control. A high-level
description of GA has been done by Davis in 1991 as
follows. [15] Given a way or a method of encoding
solutions of problem into the form of chromosomes and
given an evaluation function that returns a measurement
of the cost value of the following steps:
Step1: Initialize a population of chromosomes
Step2: Evaluate each chromosomes in the population.
Step3: Create new chromosomes by mating current
chromosomes; apply mutation and recombination as the
parent chromosomes mate.

Step4: Delete members of the population to make
room for new chromosomes.
Step5: Evaluate the new chromosomes and insert
them into the population.
Step6: If the stopping criterion is satisfied, then stop
and return the best chromosome; otherwise, go to
step3

3.2 Edge detection by CNN and genetic
algorithms

In this work, proper CNN templates are described to
locate edge detection in image by using genetic
algorithms. For this aim, CNN templates are
designed so that they satisfy the stability. So, A and
B templates are selected as symmetric. Because of
selecting size of templates as 3*3, totally 11
template parameters are searched. One of these
parameters is offset, five of them belongs the A
matrix, and the other five parameters belongs the B
matrix. Each parameter are encoded by 16 bits in
chromosomes. So, the length of chromosomes has
been selected as 176 bits. In training process, 72
chromosomes are constructed as initial population
randomly. The number of population is kept
constant as 72 during the algorithm. Mutation
probability m p has been set % 1. Training process
includes these steps as follows.
(i).Construct initial population; A matrix is
constructed called as population matrix. Each row of
the population matrix represents chromosomes.
Because of selecting number of chromosomes is 72,
there are 72 rows in population matrix. Number of
columns of this matrix is 176, because there are 176
bits in each chromosome. At the beginning this
matrix is constructed randomly.
(ii). Extract the CNN template: Chromosomes
represents the binary codes of the elements of the
CNN template A,B, I . In this step, each
chromosomes are decoded the elements of the CNN

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 650
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

are computed in [-8,8] interval. Since each element is
coded as 16 bits, each parameter can take 216 different
value in [-8,8] interval. In each chromosomes first 11 bits
represents first bits of the template elements. And second
11 bits of chromosomes represents the second bits of the
template elements and so on. These elements are

)5(,,,,,,, ,22211312112221131211 IS BBBBBAAAAA=
(iii). Evaluate cost function value for each chromosomes;
In this step, an image which was selected as training
image is given as input to CNN. Normally in this gray-
level image, brightness varies in 0 (black) through
1(white) interval. To fit this image to CNN operation,
brightness of the image is converted from [0,1] to [-1,1].
According the same rule, brightness of the CNN output
image is converted from [-1,1] to [0,1].Then CNN works
with templates belonging with first chromosome. After
the CNN output appears as stable, cost function is
computed between this output image and target image
which we want to obtain. This process is repeated with
template sets belongs each chromosomes in the
population. Cost function has been selected in this study
as follow

).6(),,(,,∑∑ ⊕=
M

i

N

j
jiji TPIBACost

where A,B, I represents CNN templates, m, n represents
number of pixels of the image, P and T represent input

and target image, respectively, notation ⊕ represents
XOR operation between each elements of the P and T .
After the finding the cost function, fitness function is
evaluated for each chromosome according this rule;
fitness(A, B, I) = m* n - cost(A, B, I) (7).
Another definition has been defined for stopping criterion
as follows;
stcriterion = 0.99 *m* n (8).
where m represents the number of rows of the image
matrix and n represents the number of the columns of the
image matrix. If the maximum fitness value of the
chromosomes is greater than stop criterion, algorithms is
stopped and the chromosome whose fitness value is the

maximum fitness in the population is selected. The
templates which has been extracted from this
selected chromosomes are the most proper the
templates which satisfy the task we wanted to
realize.
(iv). Creating new generation; Before creating next
generation, fitness values of the population are
sorted by descendent order. And all of the fitness
values are normalized related to the sum of the
fitness values of the population. A random number r
between 0 and 1 is generated. Then the first
population member is selected whose normalized
fitness, added to normalized fitnesses of the
proceedings population members, is greater than or
equal to r . This operation is repeated 72 times. So,
the chromosomes whose fitness are bad are deleted
from the population. This procedure mentioned
above is called reproduction process in genetic
algorithms. Reproduction process does not generate
new chromosomes. It elect the best chromosomes in
the population and increases the number of the
chromosomes whose fitness values are relatively
greater than the others.
After the reproduction 36 pairs of chromosomes are
selected as parents randomly. Two numbers s1, s2
between 1 and length of chromosomes,176 are
generated. The bit strings between s1 and s2 are
called crossover site. During the crossing over
process, bit strings in crossover site in each pair of
chromosomes are interchanged. Then two new
chromosomes are created from a pair of old
chromosomes. At the last, 72 new chromosomes
which are called children are generated to build new
population. Over these chromosomes, mutation
operation is processed. Since mutation probability
has been set to %1, 126 bits are selected randomly
in the population and they are inverted. And the
chromosome whose fitness value was the best
before the reproduction process is added instead of

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 651
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

deleted a chromosome which randomly selected in the
population that was obtained after the mutation process
population to save the best chromosome. This new
population is the next generation population. After the
obtaining the new generation searching procedure goes to
second step and goes on until the stopping criterion was
happened in the second step.

3.3 Time multiplexing simulation approach

In this procedure it is possible to define a block of CNN
processors which will process a subimage whose number
of pixels is equal to the number of CNN processors in the
block. The processing within this subimage follows the
raster approach adapted in Chua and Yang (1988b). Once
convergence is achieved, a new subimage is processed.
The same approach is being carried out until the whole
image has been scanned. It is clear that with this
approach the hardware implementation becomes feasible
since the number of CNN processors is finite. Also, the
entire image is scanned only once since each block is
allowed to fully converge. An important point is to be
noticed that the processed border pixels in each subimage
may have incorrect values since they are processed
without neighboring information only local interactions
are important for the latency of CNNs. To overcome the
aforementioned problem two sufficient conditions must
be considered while performing time-multiplexing
simulation. Alternatively, to ensure that each border cell
properly interacts with its neighbors it is necessary to
have the following. (1) To have a belt of pixels from the
original image around the subimage and (2) to have pixel
overlaps between adjacent subimages.

It is possible to quantize the processing error of any
border cell Cij with neighborhood radius of 1. By
computing independently the error owing to the feed
forward operator and interaction among cells for the two
horizontally adjacent processing blocks, the absoulte

processing error owed only to the effect of the B
template is obtained by subtracting the erroneous
state value from the error free states using Eq. 1.

This gives,)(!,

3

1
1, +

=

=
+∑= ji

i

i
ji

B
ij usignbε (9)

Where

functionsignThesign

b ji

=

=

+

+

(.)

u signalsinput of absence the

 todue templateB thefrom entries missing The

lji,

1,

The latter function is used to represent the status of
a pixel, e.g. black = 1 and white = -1. It is seen that
the error is both image and template dependent.
Alternatively, the steady state of a border cell may
converge to an incorrect value due to the absence of
its neighbors weighted input. Given the local
interconnectivity properties of CNN, one can
conclude that the minimum width of the input belt
of pixels is equal to the neighborhood radius of the
CNN. Interaction between Cells in view of
interaction between cells, it is possible to compute
the absolute error in a similar way. In absence of the
B template for a moment, the error is expressed as:

)(1,

3

1
1, tyb ji

i

i
ji

A
ij +

=

=
+∑=ε (10)

Where

)(y signalsinput of absence the

 todue A template thefrom entries missing The

lji,

1,

t
a ji

+

+ =

In this case output signals depend on the state of
their corresponding cells. The technique of an
overlap of pixels between two adjacent blocks is
proposed in order to minimize the error. The
minimum overlap width must be proportional to two
times of the neighborhood`s radius of the CNN. The
time-multiplexing procedure deals with iterating

IJSER

http://www.ijser.org/
http://scialert.net/fulltext/?doi=rjit.2009.1.16#87460_ja
http://scialert.net/fulltext/?doi=rjit.2009.1.16#e1

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 652
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

each block (subimage) until all CNN cells within the
block converge. The block with converged cells will have
state variables x which are the values used for the final
output image shown in Fig. 1, the converged values from
Block i are taken by the left side of the overlapped cells
and the right side from Blocki+1. Further, the initial
conditions for the border cells of Block i+1 are the state
values obtained while processing Block i-1. In the
simulator used here, the number of overlapping columns
or rows between the adjacent blocks is defined by the
user. Suppose if higher number of overlapping is
obtained in columns or rows then it indicates the more
accurate simulation of neighboring effects on the border
cells.

Fig. 1: CNN multiplexing with overlapped cells

In case of practical applications the correct final state is
of more importance than the transient states, an overlap
of two is usually sufficient. An even number of
overlapping cells is recommended, because the
converged cells in the overlapped region can be evenly
divided by the two adjacent blocks. Having the added
overlapping feature, better neighboring interactions are
achieved, but at the same time, an increase in
computation time is unavoidable. On the other hand, by
taking advantage of the fact that the original input image
is been divided into small CNN subimages, the chance of

a subimage having all its pixels black or white is
high. This is another feature that can be added to the
time multiplexing simulation to improve
computation times. The savings in simulation time
come from avoiding repetitive simulations of all-
black and all-white subimages. The notion behind
this timesaving scheme is that when the very first
all-black/all-white block is encountered, after
processing that block, the final states of the block
are stored separately from the whole image. When
subsequent all-black/all-white blocks are found,
there is no need to simulate these blocks since the
converged states are readily available in memory,
which in turn leads to avoiding the most time
consuming part of the simulation which is the
numerical integration. The overall idea of this
simulation approach is given below in the form of
program fragment.

Program Fragment for Time-Multiplexing CNN
Simulation To understand the overall concept of
overlap and belt approaches and raster simulation,
the simplified version of algorithm with simulated
annealing is given:

 Algorithm: (Time-Multiplexing CNN simulation
with genetic algorithm)
Obtain the input image, initial conditions and
templates from user;
/* M,N = # of rows/columns of the image */
/* apply genetic algorithm in section 3.1*/
/* Use the optimized parameters from the algorithm
*/
B= {Cij = 1,..., block_x and j = 1,..., block_y}P C
S = set of border cells (lower left corner) overlap =
number of cell overlaps;
belt = width of input belt M = number of rows of the
image N = number of columns of the image
for (i=0; i < M; i += block_x - overlap)

IJSER

http://www.ijser.org/
http://scialert.net/fulltext/?doi=rjit.2009.1.16#f2

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 653
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

for (j=0; j < N; j += block_y - overlap)
/* load initial conditions for the cells in the block except
for those in the borders */
for (p=-belt; p < block._x + belt; p++)
for (q=-belt; q < block_y + belt; q++) {
 xi+p, j+q (t)=

BC
u

qpji

ij

∈∀

−
++

1
1

}/* end for */
/* if the block is all white or black don't
process it */

qpjiqjpiqjpi Cxxif ++++++ ∀=∨−= 11()

{
obtain the final states from memory;
continue;
}
do { /* normal raster simulation */
for (p=O; p < block_x; p++) (
for (q=O; q < block_y; q++)
/* calculation of the next state excluding the belt of inputs
*/
xi+pj+q (tn+1) = xi+pj+q (tn+1) +

 () BCdtf qpji

t

t

n

n

⊂∀++′ ++∫
+1

)(t qj pxi n

/* convergence criteria */
() ()

++∈±==++ qjpiNlkc　ｙand

dt
tdx

If rｋｌ

nqjpi ,),(10,

converged_cells++;
}/* end for */
/* update state values */
xi+pj+q (tn+1) = xi+pj+q (tn)
while(converged_cels < (block_x *block_y));
/* store new state values excluding the ones corresponding
to the border cells */

 PBCxA ijij \∈∀←

}/* end for */

The raster approach implies that each pixel is
mapped onto a CNN processor. That is, we have an
image processing function in the spatial domain that
can be expressed as:

g(x,y) = T(f(x,y))
 (9)

where f(.) is the input image, g(.) the processed
image, and T is an operator on f(.) defined over the
neighborhood of (x,y).

4 Numerical Integration Methods

four of the single-step numerical integration
algorithms used in the CNN behavioral simulator
described here. They are Euler, RK4(2), RK4(3) and
RK6(4).

4.1 The Proposed Methods

R.Ponalagusami and S.Senthilkumar introduced

Time-Multiplexing CNN using Limiting Formula

RK (7,8) (R.Ponalagusami and S.Senthilkumar

2008). In this paper, we consider the same problem

but by using different approaches RK4(2) ,RK4(3)

and RK6(4).

4.1.1 Stepsize selection algorithm.
There are currently two widely used methods that

have appeared in the literature for changing the
stepsize of p (q)-order RK codes. The first is to
apply the formula (see [9])

,

1
1

11

 +

+
=

TES
TOLfh

n

q

n

 (10)
Where f1 is a safety factor and the new sought-after
stepsize hn+1 = xn+1 - xn is predicted in terms of an

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 654
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

estimate of the local error ESTn which is based on the
approximation

,
^

yyEST nnn −≈ (11)

Assuming yy nn

^

, to be the pth-, qth-order approximate

solutions, respectively, at the previous grid point xn and
TOL the requested tolerance. If

 ,TOLEST n ≤ (12)
Then the computed solution yn+1 is accepted and the
integration is carried out, otherwise(5) is reevaluated by
substituting

ESTEST nn 1+→ (13)
 This methodology is termed the error per step (EPS)
mode (see Shampine [10]).
An alternative is to consider the same algorithm (5), but
to use, instead of (6), the approximation

,
h

yy
EST

n

n
n

n

∧

−
≅

 (14)

This is called error per unit step (EPUS) [10].

4.1.2 RK4(2) and RK4(3) at n = 4
According to [8], The equations of RK4(2) and RK4(3)
are:
 k1

ij = τf΄(xij(nτ))

 k2
ij = τf΄(xij(nτ))+ 14

5
 k1

ij

k3
ij = τf΄(xij(nτ))- 605

52
 k1

ij + 1210
819

 k2
ij

 k4
ij = τf΄(xij(nτ))+ 4745

2576
 k1

ij - 365
252

 k2
ij +

949
1089

 k3
ij

k5
ij = τf΄(xij(nτ))+ 130

19
 k1

ij + 1215
343

 k2
ij +

3159
1331

 k3
ij + 486

73
 k4

ij
Therefore, the final integration is a weighted sum of the

five calculated derivates is given:

xij((n+1)τ) =xij(nτ) + 130
19

 k1
ij + 990

203
 k2

ij

+ 3159
1331

 k3
ij + 486

73
 k4

ij (15)
The difference between Rk4(2) and RK4(3) is the
local truncation error in the case of RK4(2) is given
by using the RK(2)i.e.

yij((n+1)τ) =yij(nτ) + 55
4

 k1
ij + 1215

343
 k2

ij

+ 18
13

 k3
ij (16)

But local truncation error in the case of RK4(3) is
given by using the RK(3)i.e.

yij((n+1)τ) =yij(nτ) + 130
11

 k1
ij + 1215

637
 k2

ij

+ 3159
605

 k3
ij - 1215

73
 k4

j (17)

4.1.3 RK6(4) at n= 6
According to [8], The equations of RK6(4) are:
k1

ij = τf΄(xij(nτ))

k2
ij = τf΄(xij(nτ)) + 27

4
 k1

ij

k3
ij = τf΄(xij(nτ)) + 18

1
 k1

ij + 6
1

 k2
ij

k4
ij = τf΄(xij(nτ))+ 343

66
 k1

ij - 1372
727

 k2
ij +

1372
1053

 k3
ij

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 655
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

K5
ij = τf (́xij(nτ))+ 49152

13339
 k1

ij - 16384
4617

 k2
ij +

53248
5427

 k3
ij + 159744

95207
 k 4

ij

K6
ij = τf΄(xij(nτ)) - 57122

6935
 K1

ij + 48334
23085

k K2
ij

 + 273642941
333633360

 K3
ij + 118442467

972160
 K4

ij +

610434253
336333601726873603

 K5
ij

K6
ij = τf΄(xij(nτ)) + 1891

611
 K1

ij - 7564
4617

 K2
ij +

13176488
6041007

 K3
ij + 22100117

12708836
 K4

ij -

62461621
3584000

 K5
ij + 7972456

6597591
 K6

ij
Therefore, the final integration is a weighted sum of the
seven calculated derivates is given:

xij((n+1)τ) =xij(nτ) + 1800
131

 K1
ij + 392080

1121931203

K3
ij + 1682928

319333
 K4

ij + 2477325
262144

 K5
ij

+ 15177600
4084223

 K6
ij + 25200

1891
 K7

ij (18)

Where f(l.) is computed according to (1). There are many
single step methods available to us for this purpose. But,
one option worth considering is the combination of two
methods in solving for the solution. So we use Rk6(4)
to make a very efficient computer solving the problem
the way it evaluates the integral presented.

5 Simulation Results and
Comparisons

Fig.3. Image processing (a) After Averaging
Template (b) After Averaging and Edge Detection

The simulation time used for comparisons is the
actual CPU time used. The input image format for
this simulator is a JPEG format.
Fig. 3 shows results of the raster simulator obtained
from a complex image of 65,536(256x256) pixels.
For this example an Averaging template followed
by an Edge Detection template were applied to the
original image to yield the images displayed in Figs.
3a and 3b, respectively.
Also in figure 3, it has been shown the quality
measures of the two pictures in 2a and 2b by using
the numerical techniques RK4(2),RK4(3) and
RK6(4) using simulated annealing. We notice that
these results are better than those in the literature.
Since speed is one of the main concerns in the
simulation, finding the maximum step size that still
yields convergence for a template can be helpful in
speeding up the system. The speed-up can be
achieved by selecting an appropriate ∆t for that
particular

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 656
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

template. Even though the maximum step size may
slightly vary from one image to another, the values in
Fig.4 still serve as good references. These results were
obtained by trial and error over more than 100
simulations On Lena image with small size 43x64(2752
pixels).The importance of selecting an appropriate ∆t can
be easily visualized in Fig. 5. If the step size chosen is
too small, it might take many iterations, hence longer
time, to achieve convergence. On the other hand, if the
step size taken is too large, it might not converge at all
or it would converge to erroneous steady state values.
The results of Fig. 4 were obtained by simulating Lena
image of size 43x64(2752 pixels) using an Edge
detection template. We notice that the CPU time for our
method is better than those in the literature.

6 Conclusion
As researchers are coming up with more and more
CNN applications, an efficient and powerful
simulator is needed. So we use simulated annealing
in optimizing CNN using the numerical integrations,
especially using RK4(2),RK4(3) and RK6(4) for
more efficiency with genetic algorithms. The
simulator hereby presented meets the need in six
ways: 1) Depending on the accuracy required for the
simulation, the user can choose from three
numerical methods to perform the numerical
integration, 2) The input image format is JPEG,
which is commonly available, 3) The input image
can be of any size, allowing simulation of images
available in common practices, 4) CPU time of our
methods is better than those in the literature, 5),
the quality measures of the pictures and the edge
detection for our method is better than those in the
literature

method

Mean Square
Error

Peak
Signal to
Noise
Ratio

MNormalized
Cross-Correlation

Average
Difference

Structural
Content

Maximum
Difference

Normalized
Absolute
Error

RK4(2) 1.6000e+003 14.4032 0.9745 5.4453 1.2237 223 0.0260
RK4(3) 1.6350e+003 13.4030 0.9605 5.2236 1.3108 227 0.2200
RK6(4) 1.6100e+003 11.4033 1.1100 5.0000 0.92200 228 0.2300

Fig.5. Simulation time comparisons for 4
different numerical techniques
for four different templates

Fig.3. Quality measures of fig.2a and fig.2b

Edge Detection Averaging Connected Component

Fig.4. Maximum step size that still yield
 convergence for 4 different templates

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 657
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

References
[1] R.Ponalagusami and S.Senthilkumar(2008).
“Time-Multiplexing CNN Simulation using
Limiting Formula RK(7,8)”.Research Journal of
Information Technology 1(1):1-16.
 [2] L. 0. Chua and L. Yang(1988). “Cellular Neural
Networks: Theory & Applications,” IEEE Trans.
Circuits and Systems, Vol. CAS-35, pp. 1257-1290.
[3] L.O. Chua and T. Roska(1992). “The CNN
Universal Machine Part 1: The Architecture”, in Int.
Workshop on Cellular Neural Networks and their
Applications (CNNA), pp. 1-10.
[4] J. A. Nossek, G. Seiler, T. Roska and L. 0. Chua
(1992.). “Cellular Neural Networks: Theory and
Circuit Design,” International Journal of Circuit
Theory and Applications, Vol. 20, pp. 533-553.
[5] J. Varrientos and E. Sanchez-Sinencio(1992),
“CELLSIM: A cellular neural network simulator for
the personal computer,” in Proc. 35th Midwest
Symp. Circuits Systs, pp. 1384-1387.
[6] W. H. Press, B. P. Flannery, S.A. Teukolsky, and
W.T.g Vetterling(1986). “Numerical Recipes. The
Art of Scientific Computing”, Cambridge University
Press, New York.
[7] P.J.M. van Laarhoven and E.H.L. Aarts, (1987)
Simulated Annealing: Theory and Application.
ISBN 90-277-2513-6
[8] Ch. Tsitouras and S. N. Papakostas(1991)
“Cheap Error methods for Runge-Kutta methods ”,
SIAM J. SCI. COMPUT, Society for Industrial and
Applied Mathematics, Vol. 20, No. 6, pp.
2067-2088.
[9] T. E. Hull, W. H. Enright, B. M. Fellen, and A.
E. Sedgwick(1972), Comparing numerical methods
for ordinary di_erential equations, SIAM J. Numer.
Anal., 9 , pp. 603{637.
[10] L. F. Shampine(1986), Some practical Runge-
Kutta formulas, Math. Comp., 46 , pp. 135{150.

[11] T. Sziranyi, M. Csapodi, ‘‘ Texture
Classification and Segmentation by Cellular
Neural Network Using Genetic Learning’’,
Research Report ,Budapest,Hungary,
November,1994
[12] C.T. Lin, C.S. George Lee ‘‘ Neural Fuzzy
Systems ’’ , Prentice-Hall Inc., New Jersey,
1995.
[13] J.H. Holland, ‘‘Outline for a logical theory
of adaptive systems.’’, J. Assoc. Computing.
Mach. 3:297-314,
[14] J.H. Holland, ‘‘Adaptation in neural and
artificial systems’’, Ann Arbor, MI: University
of the Michigan Press, 1975
[15] L. Davis,‘‘Handbook of Genetic
Algorithms’’ New York:Van Nostrand,
Reinhold,1991.
1988

[16] T. Kozek, T. Roska, L.O. Chua, :‘‘Genetic
Algorithms for CNN template Learning’’, IEEE
Trans. On Circuit and Systems, Vol.40, No.6 pp.
392-402, 1988
[17] T. Sziranyi, M. Csapodi, ‘‘ Texture
Classification and Segmentation by Cellular
Neural Network Using Genetic Learning’’,
Research Report ,Budapest,Hungary,
November,1994
[18] J.Hu, H.Yan, M. Sakalli, ‘‘Locating head
and face boundaries for head-shoulder images’’,
Pattern Recognition 32 (1999) 1317-
1333
[19] A. Samal, P.A. Iyengar, ‘‘Automatic
recognition and analysis of human faces and
facial expressions : a survey’’, Pattern
Recognition 25 (1) (1992) 65-77
[20] R. Chellappa, C.L. Wilson, S. Sirohey,
‘‘Human and machine recognition faces: a
survey’’, Proc. IEEE 83 (5) (1995) 705-740.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 658
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

[21] S.H. Jeng, H.Y.M. Liao, C.C.Han, M.Y. Chern,
Y.T.Liu ‘‘Facial feature dedection using
geometrical face model: an efficient approach’’
[22] C.T. Lin, C.S. George Lee ‘‘ Neural Fuzzy
Systems ’’ , Prentice-Hall Inc., New Jersey,
1995.

IJSER

http://www.ijser.org/

	R.Ponalagusami and S.Senthilkumar introduced Time-Multiplexing CNN using Limiting Formula RK (7,8) (R.Ponalagusami and S.Senthilkumar 2008). In this paper, we consider the same problem but by using different approaches RK4(2) ,RK4(3) and RK6(4).

