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Abstract - This paper presents proper CNN templates for edge detection in image processing. Training of 
CNN is done by using genetic algorithm. In this research, a versatile algorithm for simulating CNN arrays 
and time multiplexing is implemented using numerical integration algorithms; RK4(2), RK4(3) and RK6(4). 
The approach, time-multiplexing simulation, plays a pivotal role in the area of simulating hardware models 
and testing hardware implementations of CNN. Owing to hardware limitations in practical sense, it is not 
possible to have a one-one mapping between the CNN hardware processors and all the pixels of the image. 
The simulator is capable of performing CNN simulations for any size of input image, thus a powerful tool for 
researchers investigating potential applications of CNN.  
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1   Introduction 
Most of the widely applied genetic cellular neural 
networks fall into two main classes: (1) memoryless 
cellular  neural networks and (2) dynamical cellular  
neural networks. As in Hopfield networks (HN) and 
CNN, dynamical neural networks have usually been 
designed as dynamical systems where the inputs are set to 
some constant values and each trajectory approaches one 
of the stable equilibrium points depending upon the 
initial state. Cellular Neural Network is a large-scale non-
linear analog circuits which processes signals in real 
time[2]. The network behavior of CNN depends on the 
initial state of the cells activation, namely bias I and on 
weights values of A and B matrices which are associated 
with the connections inside the well-defined 
neighborhood of each cell. There are many        

approaches in estimation of A,B, I matrices. Here 
we prefer genetic algorithm. Genetic algorithm is a 
learning algorithm based on the mechanism of 
natural selection and genetics, which have proved to 
be effective in a number of applications. It works 
with a binary coding of the parameter set, searches 
from a number of points of the parameter space. It 
uses only the cost function during the optimization, 
it need not derivatives of the cost function or other 
information. [16-22]. 
In this paper, we focus on edge detection which is 
much significant in various application as  virtual 
reality, intelligent human-computer interface and 
TV-conference, security system.[18,19,20]. First 
step in edge detection is locating face and facial 
features [18],[19]. Then, the detected edges have to 
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be normalized and recognized by specially designed 
classifier. In this study, we find the facial features and 
face region using CNN templates estimated by using 
genetic algorithms. 

 
 
2  Cellular Neural Networks 
Like cellular automata, the CNN is made of a massive 
aggregate of regularly spaced circuits clones, called cells, 
which communicate with each other directly only through 
nearest neighbors. In Figure 2, each cell is modeled as 
squares. The adjacent cells can interact directly with each 
other. Cells not directly connected together may affect 
each other indirectly because of the propagation effects 
of the continuous-time dynamics of cellular neural 
networks. An example of a two-dimensional CNN is 
shown in Figure 3. Now let us define the neighborhood of 
C(i,j). 
Definition : r-neighbourhood 
The r-neighbourhood of a cell C(i,j) , in a cellular neural 
network is defined by, 
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where r is a positive integer number. 
 
Figure 3 shows neighborhoods of the C(i,j) cell (located 
at the center and shaded) with r=1 and 2,respectively. To 
show neighbourhood relations more clearly, the center 
pixel is coloured as black and related pixels in brown in 
Figure 3 and 4. Cells are multiple input-single output 
nonlinear processors all described by one, or one among 
several different, parametric functionals. A cell is 
characterized by a state variable, that is generally not 
observable as such outside the cell itself. It contains 
linear and non-linear circuit elements such as linear 
resistors, capacitors and non-linear controlled sources 
(Figures 4 and 5). 

Every cell is connected to other cells within a 
neighborhood of itself. In this scheme, information 
is only exchanged between neighbouring neurons 
and this local information characteristic does not 
prevent the capability of obtaining global 
processing. The CNN is a dynamical system 

operating in continuous or discrete time. A general 
form of the cell dynamical equations may be stated 
as follows: 
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where x,y,u,I denote respectively cell state, output, 
input, bias and j and k are cell indices. CNN 
parameter values are assumed to be spaced-invariant 
and the nonlinear function is chosen as piece-wise 
linear. Since we use discrete 2-D images, Equation 
(2) is rewritten as,  
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with A, B and I being cloning template matrices that 
are identically repeated in the neighbourhood of 
every neuron as, 
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The network behaviour of CNN depends on the initial 
state of the cells activation, namely bias I and on weights 
values of A and B matrices which are associated with the 
connections inside the well-defined neighbourhood of 
each cell. CNN's are arrays of locally and regularly   
interconnected neurons, or, cells, whose global 
functionality are defined by a small number of 
parameters (A,B, I) that specify the operation of the 
component cells as well as the connection weights 
between them. CNN can also be considered as a 
nonlinear convolution with the template. Cells can be 
characterized by a functional block diagram that is 
typical of neural network theory: Figure 4 depicts a two-
stage functional block diagram of a cell, composed of a 
generalized weighted sum (in general nonlinear with 
memory) integration, output nonlinear 
function/functional. Data can be fed to the CNN through 
two different ports: initial conditions of the state and 
proper input u. Bias values I may be used as a third port. 
The network behaviour of CNN depends on the initial 
state of the cells activation, namely bias I and on weights 
values of A and B matrices which are associated with the 
connections inside the well-defined neighbourhood of 
each cell. CNN's are arrays of locally and regularly 
interconnected neurons, or, cells, whose global 
functionality are defined by a small number of 
parameters (A,B, I) that specify the operation of the 
component cells as well as the connection weights 
between them. CNN can also be considered as a 
nonlinear convolution with the template. Since the 
introduction of Chua [2], CNN has attracted a lot of 
attention. Not only from a theoretical point of view these 
systems have a number of attractive properties, but 
furthermore there are many well-known applications like 

image processing, motion detection, pattern 
recognition, simulation. The reduced number of 
connections within a local neighbourhood, the 
principle of cloning template etc., turn out to be 
advantage of CNN's. 

 
3  Behavioral Simulation 
Recall that equation (1) is space invariant, 
which means that A(i,j;k,l) = A(i-k,j-1) and 
B(i,j;k,l) =  B(i,k;,j,l) for all i,j,kl. 
Therefore, the solution of the system of difference 
equations can be seen as a convolution process 
between the image and the CNN processors. The 
basic approach is to imagine a square subimage area 
centered at (x,y), with the subimage being the same 
size of the templates involved in the simulation. The 
center of this subimage is then moved from pixel to 
pixel starting, say, at the top left comer and applying 
the A and B templates at each location (x,y) to solve 
the differential equation. This procedure is repeated 
for each time step, for all the pixels. An instance of 
this image scanning-processing is referred to as an 
“iteration”. The processing stops when it is found 
that the states of all CNN processors have 
converged to steady-state values[2]  and the outputs 
of its neighbor cells are saturated, e.g. they have a 
+1 value.  
This whole simulating approach is referred to as 
raster simulation. A simplified algorithm is 
presented below for this approach. The part where 
the integration is involved (i.e. calculation of the 
next state) is explained in the Numerical Integration 
Methods section. 
In the following two subsections we will discuss 
genetic algorithms and edge detection by CNN and  
genetic algorithms. 
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3.1 Genetic Algorithms 
In the estimation of A.B. and I matrices of CNN, we use 
genetic algorithms. Genetic algorithm is a learning 
algorithm based on the mechanism of natural selection 
and genetics, which have proved to be effective in a 
number of applications. It works with a binary coding of 
the parameter set, searches from a number of points of 
the parameter space. It uses only the cost function during 
the optimization, it need not derivatives of the cost 
function or other information. [11,12]. Processes of 
natural selection cause chromosomes that encode 
successful structures to reproduce more often than those 
that do not. In addition to reproduction, mutations may 
cause the chromosomes of children to be different from 
those of their biological parents, and crossing over 
processes create different chromosomes in children by 
changing the some parts of the parent chromosomes 
between each other. Like nature, genetic algorithms solve 
the problem of finding good chromosomes by 
manipulating in the chromosomes blindly without any 
knowledge about the problem they are solving.[12]. The 
underlying principles of GA were first published by 
Holland in1962, [13]. The mathematical  framework was 
developed in the 1960s and is presented in his pioneering 
book in 1975 [14]. In optimization applications, they 
have been used in many diverse fields such as function 
optimization, image processing, the traveling salesperson 
problem, system identification and control. A high-level 
description of GA has been done by Davis in 1991 as 
follows. [15] Given a way or a method of encoding 
solutions of problem into the form of chromosomes and 
given an evaluation function that returns a measurement 
of the cost value of the following steps: 
Step1: Initialize a population of chromosomes 
Step2: Evaluate each chromosomes in the population. 
Step3: Create new chromosomes by mating current 
chromosomes; apply mutation and recombination as the 
parent chromosomes mate. 

Step4: Delete members of the population to make 
room for new chromosomes. 
Step5: Evaluate the new chromosomes and insert 
them into the population. 
Step6: If the stopping criterion is satisfied, then stop 
and return the best chromosome; otherwise, go to 
step3 

  

3.2 Edge detection by CNN and genetic 
algorithms 

In this work, proper CNN templates are described to 
locate edge detection in image by using genetic 
algorithms. For this aim, CNN templates are 
designed so that they satisfy the stability. So, A and 
B templates are selected as symmetric. Because of 
selecting size of templates as 3*3, totally 11 
template parameters are searched. One of these 
parameters is offset, five of them belongs the A 
matrix, and the other five parameters belongs the B 
matrix. Each parameter are encoded by 16 bits in 
chromosomes. So, the length of chromosomes has 
been selected as 176 bits. In training process, 72 
chromosomes are constructed as initial population 
randomly. The number of population is kept 
constant as 72 during the algorithm. Mutation 
probability m p has been set % 1. Training process 
includes these steps as follows. 
(i).Construct initial population; A matrix is 
constructed called as population matrix. Each row of 
the population matrix represents chromosomes. 
Because of selecting number of chromosomes is 72, 
there are 72 rows in population matrix. Number of 
columns of this matrix is 176, because there are 176 
bits in each chromosome. At the beginning this 
matrix is constructed randomly. 
(ii). Extract the CNN template: Chromosomes 
represents the binary codes of the elements of the 
CNN template A,B, I . In this step, each 
chromosomes are decoded the elements of the CNN 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013                                         650 
ISSN 2229-5518 

IJSER © 2013 
http://www.ijser.org 

are computed in [-8,8] interval. Since each element is 
coded as 16 bits, each parameter can take 216 different 
value in [-8,8] interval. In each chromosomes first 11 bits 
represents first bits of the template elements. And second 
11 bits of chromosomes represents the second bits of the 
template elements and so on. These elements are  

   )5(,,,,,,, ,22211312112221131211 IS BBBBBAAAAA=  
(iii). Evaluate cost function value for each chromosomes; 
In this step, an image which was selected as training 
image is given as input to CNN. Normally in this gray-
level image, brightness varies in 0 (black) through 
1(white) interval. To fit this image to CNN operation, 
brightness of the image is converted from [0,1] to [-1,1]. 
According the same rule, brightness of the CNN output 
image is converted from [-1,1] to [0,1].Then CNN works 
with templates belonging with first chromosome. After 
the CNN output appears as stable, cost function is 
computed between this output image and target image 
which we want to obtain. This process is repeated with 
template sets belongs each chromosomes in the 
population. Cost function has been selected in this study 
as follow 
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where A,B, I represents CNN templates, m, n represents 
number of pixels of the image, P and T represent input 

and target image, respectively, notation ⊕  represents 
XOR operation between each elements of the P and T . 
After the finding the cost function, fitness function is 
evaluated for each chromosome according this rule; 
fitness(A, B, I ) = m* n - cost(A, B, I )         (7). 
Another definition has been defined for stopping criterion 
as follows; 
stcriterion = 0.99 *m* n                       (8). 
where m represents the number of rows of the image 
matrix and n represents the number of the columns of the 
image matrix. If the maximum fitness value of the 
chromosomes is greater than stop criterion, algorithms is 
stopped and the chromosome whose fitness value is the 

maximum fitness in the population is selected. The 
templates which has been extracted from this 
selected chromosomes are the most proper the 
templates which satisfy the task we wanted to 
realize. 
(iv). Creating new generation; Before creating next 
generation, fitness values of the population are 
sorted by descendent order. And all of the fitness 
values are normalized related to the sum of the 
fitness values of the population. A random number r 
between 0 and 1 is generated. Then the first 
population member is selected whose normalized 
fitness, added to normalized fitnesses of the 
proceedings population members, is greater than or 
equal to r . This operation is repeated 72 times. So, 
the chromosomes whose fitness are bad are deleted 
from the population. This procedure mentioned 
above is called reproduction process in genetic 
algorithms. Reproduction process does not generate 
new chromosomes. It elect the best chromosomes in 
the population and increases the number of the 
chromosomes whose fitness values are relatively 
greater than the others. 
After the reproduction 36 pairs of chromosomes are 
selected as parents randomly. Two numbers s1, s2 
between 1 and length of chromosomes,176 are 
generated. The bit strings between s1 and s2 are 
called crossover site. During the crossing over 
process, bit strings in crossover site in each pair of 
chromosomes are interchanged. Then two new 
chromosomes are created from a pair of old 
chromosomes. At the last, 72 new chromosomes 
which are called children are generated to build new 
population. Over these chromosomes, mutation 
operation is processed. Since mutation probability 
has been set to %1, 126 bits are selected randomly 
in the population and they are inverted. And the 
chromosome whose fitness value was the best 
before the reproduction process is added instead of 
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deleted a chromosome which randomly selected in the 
population that was obtained after the mutation process 
population to save the best chromosome. This new 
population is the next generation population. After the 
obtaining the new generation searching procedure goes to 
second step and goes on until the stopping criterion was 
happened in the second step. 

3.3 Time multiplexing simulation approach  

In this procedure it is possible to define a block of CNN 
processors which will process a subimage whose number 
of pixels is equal to the number of CNN processors in the 
block. The processing within this subimage follows the 
raster approach adapted in Chua and Yang (1988b). Once 
convergence is achieved, a new subimage is processed. 
The same approach is being carried out until the whole 
image has been scanned. It is clear that with this 
approach the hardware implementation becomes feasible 
since the number of CNN processors is finite. Also, the 
entire image is scanned only once since each block is 
allowed to fully converge. An important point is to be 
noticed that the processed border pixels in each subimage 
may have incorrect values since they are processed 
without neighboring information only local interactions 
are important for the latency of CNNs. To overcome the 
aforementioned problem two sufficient conditions must 
be considered while performing time-multiplexing 
simulation. Alternatively, to ensure that each border cell 
properly interacts with its neighbors it is necessary to 
have the following. (1) To have a belt of pixels from the 
original image around the subimage and (2) to have pixel 
overlaps between adjacent subimages.  

It is possible to quantize the processing error of any 
border cell Cij with neighborhood radius of 1. By 
computing independently the error owing to the feed 
forward operator and interaction among cells for the two 
horizontally adjacent processing blocks, the absoulte 

processing error owed only to the effect of the B 
template is obtained by subtracting the erroneous 
state value from the error free states using Eq. 1. 
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The latter function is used to represent the status of 
a pixel, e.g. black = 1 and white = -1. It is seen that 
the error is both image and template dependent. 
Alternatively, the steady state of a border cell may 
converge to an incorrect value due to the absence of 
its neighbors weighted input. Given the local 
interconnectivity properties of CNN, one can 
conclude that the minimum width of the input belt 
of pixels is equal to the neighborhood radius of the 
CNN. Interaction between Cells in view of 
interaction between cells, it is possible to compute 
the absolute error in a similar way. In absence of the 
B template for a moment, the error is expressed as: 
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In this case output signals depend on the state of 
their corresponding cells. The technique of an 
overlap of pixels between two adjacent blocks is 
proposed in order to minimize the error. The 
minimum overlap width must be proportional to two 
times of the neighborhood`s radius of the CNN. The 
time-multiplexing procedure deals with iterating 
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each block (subimage) until all CNN cells within the 
block converge. The block with converged cells will have 
state variables x which are the values used for the final 
output image shown in Fig. 1, the converged values from 
Block i are taken by the left side of the overlapped cells 
and the right side from Blocki+1. Further, the initial 
conditions for the border cells of Block i+1 are the state 
values obtained while processing Block i-1. In the 
simulator used here, the number of overlapping columns 
or rows between the adjacent blocks is defined by the 
user. Suppose if higher number of overlapping is 
obtained in columns or rows then it indicates the more 
accurate simulation of neighboring effects on the border 
cells. 

 
Fig. 1: CNN multiplexing with overlapped cells 

In case of practical applications the correct final state is 
of more importance than the transient states, an overlap 
of two is usually sufficient. An even number of 
overlapping cells is recommended, because the 
converged cells in the overlapped region can be evenly 
divided by the two adjacent blocks. Having the added 
overlapping feature, better neighboring interactions are 
achieved, but at the same time, an increase in 
computation time is unavoidable. On the other hand, by 
taking advantage of the fact that the original input image 
is been divided into small CNN subimages, the chance of 

a subimage having all its pixels black or white is 
high. This is another feature that can be added to the 
time multiplexing simulation to improve 
computation times. The savings in simulation time 
come from avoiding repetitive simulations of all-
black and all-white subimages. The notion behind 
this timesaving scheme is that when the very first 
all-black/all-white block is encountered, after 
processing that block, the final states of the block 
are stored separately from the whole image. When 
subsequent all-black/all-white blocks are found, 
there is no need to simulate these blocks since the 
converged states are readily available in memory, 
which in turn leads to avoiding the most time 
consuming part of the simulation which is the 
numerical integration. The overall idea of this 
simulation approach is given below in the form of 
program fragment. 

Program Fragment for Time-Multiplexing CNN 
Simulation To understand the overall concept of 
overlap and belt approaches and raster simulation, 
the simplified version of algorithm with simulated 
annealing  is given: 

  Algorithm: (Time-Multiplexing CNN simulation 
with genetic algorithm) 
Obtain the input image, initial conditions and 
templates from user; 
/* M,N = # of rows/columns of the image */ 
/* apply  genetic algorithm  in section 3.1*/ 
/* Use the optimized parameters from the algorithm 
*/ 
B= {Cij = 1,..., block_x  and  j = 1,..., block_y}P C 
S = set of border cells (lower left corner) overlap = 
number of cell overlaps; 
belt = width of input belt M = number of rows of the 
image N = number of columns of the image 
for (i=0; i < M; i += block_x - overlap) 
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for (j=0; j < N; j += block_y - overlap) 
/* load initial conditions for the cells in the block except 
for those in the borders */ 
for (p=-belt; p < block._x + belt; p++) 
for (q=-belt; q < block_y + belt; q++) { 
 xi+p, j+q (t)=  

BC
u

qpji

ij

∈∀








−
++

1
1

 
}/* end for */ 
/* if the block is all white or black don't 
process it */ 

qpjiqjpiqjpi Cxxif ++++++ ∀=∨−= 11( ) 

{ 
obtain the final states from memory; 
continue; 
} 
do { /* normal raster simulation */ 
for (p=O; p < block_x; p++) ( 
for (q=O; q < block_y; q++) 
/* calculation of the next state excluding the belt of inputs 
*/ 
xi+pj+q (tn+1) = xi+pj+q (tn+1) + 

 ( ) BCdtf qpji

t

t

n

n

⊂∀++′ ++∫
+1

)(t qj pxi n
 

/* convergence criteria */ 
( ) ( )








++∈±==++ qjpiNlkc　ｙand

dt
tdx

If rｋｌ

nqjpi ,),(10,  

converged_cells++; 
}/* end for */ 
/* update state values */ 
xi+pj+q (tn+1) = xi+pj+q (tn ) 
while(converged_cels < (block_x *block_y)); 
/* store new state values excluding the ones corresponding 
to the border cells */ 

 PBCxA ijij \∈∀←     

}/* end for */ 

 
The raster approach implies that each pixel is 
mapped onto a CNN processor. That is, we have an 
image processing function in the spatial domain that 
can be expressed as: 

g(x,y) = T(f(x,y))  
    (9) 

where f(.) is the input image, g(.) the processed 
image, and T is an operator on f(.) defined over the 
neighborhood of (x,y).  
 

4  Numerical Integration Methods 
  

four of the single-step numerical integration 
algorithms used in the CNN behavioral simulator 
described here. They are Euler, RK4(2), RK4(3) and  
RK6(4). 

 
4.1  The Proposed  Methods 

R.Ponalagusami and S.Senthilkumar introduced 

Time-Multiplexing CNN using Limiting Formula 

RK (7,8) (R.Ponalagusami and S.Senthilkumar 

2008). In this paper, we consider the same problem 

but by using  different approaches RK4(2) ,RK4(3) 

and RK6(4). 

 
4.1.1  Stepsize selection algorithm.  
There are currently two widely used methods that  
 
have appeared in the literature for changing the 
stepsize of p (q)-order RK codes. The first is to 
apply the formula (see [9]) 

  
,

1
1

11 






 +

+
=

TES
TOLfh

n

q

n

       (10) 
Where f1 is a safety factor and the new sought-after 
stepsize hn+1 = xn+1 - xn is predicted in terms of an 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013                                         654 
ISSN 2229-5518 

IJSER © 2013 
http://www.ijser.org 

estimate of the local error ESTn which is based on the 
approximation 

,
^

yyEST nnn −≈                    (11) 

Assuming yy nn

^

,  to be the pth-, qth-order approximate 

solutions, respectively, at the previous grid point xn and 
TOL the requested tolerance. If 

 ,TOLEST n ≤                         (12)         
Then  the computed solution yn+1 is accepted and the 
integration is carried out, otherwise(5) is reevaluated by  
substituting 

ESTEST nn 1+→          (13)          
 This methodology is termed the error per step (EPS) 
mode (see Shampine [10]). 
An alternative is to consider the same algorithm (5), but 
to use, instead of (6), the approximation 
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                      (14) 

 
This is called error per unit step (EPUS) [10]. 

4.1.2   RK4(2) and RK4(3) at n = 4  
According to [8], The equations of RK4(2) and RK4(3) 
are:  
 k1

ij  = τf΄(xij(nτ)) 
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19
 k1

ij  + 1215
343

 k2
ij   + 

3159
1331

 k3
ij   + 486

73
 k4

ij     
Therefore, the final integration is a weighted sum of the 

five calculated derivates is given:   

xij((n+1)τ) =xij(nτ) + 130
19

 k1
ij  + 990

203
 k2

ij    

+ 3159
1331

 k3
ij + 486

73
 k4

ij  (15) 
The difference between Rk4(2) and RK4(3) is the 
local truncation error in the case of RK4(2) is given 
by using the RK(2)i.e.  

yij((n+1)τ) =yij(nτ) + 55
4

 k1
ij   + 1215

343
 k2

ij   

+ 18
13

 k3
ij        (16) 

 
But local truncation error in the case of RK4(3) is 
given by using the RK(3)i.e.  

yij((n+1)τ) =yij(nτ) + 130
11

 k1
ij  + 1215

637
 k2

ij 

 

 

+ 3159
605

 k3
ij   - 1215

73
 k4

j     (17) 
 
4.1.3  RK6(4) at n= 6 
According to [8], The equations of RK6(4) are: 
k1

ij  = τf΄(xij(nτ)) 

k2
ij  = τf΄(xij(nτ)) + 27

4
 k1

ij  

k3
ij  = τf΄(xij(nτ)) + 18

1
 k1

ij   + 6
1

 k2
ij 

k4
ij  = τf΄(xij(nτ))+ 343

66
 k1

ij - 1372
727

 k2
ij   +  

1372
1053

 k3
ij 
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K5
ij  = τf (́xij(nτ))+ 49152

13339
 k1

ij   - 16384
4617

 k2
ij   + 

53248
5427

 k3
ij + 159744

95207
 k 4

ij   

K6
ij  = τf΄(xij(nτ)) - 57122

6935
 K1

ij + 48334
23085

k K2
ij    

  + 273642941
333633360

 K3
ij   + 118442467

972160
 K4

ij   +  

610434253
336333601726873603

 K5
ij    

K6
ij  = τf΄(xij(nτ)) + 1891

611
 K1

ij   - 7564
4617

 K2
ij  + 

13176488
6041007

 K3
ij   + 22100117

12708836
 K4

ij    - 

62461621
3584000

 K5
ij   + 7972456

6597591
 K6

ij   
Therefore, the final integration is a weighted sum of the 
seven calculated derivates is given:   

xij((n+1)τ) =xij(nτ) + 1800
131

 K1
ij   + 392080

1121931203
 

K3
ij   + 1682928

319333
 K4

ij  + 2477325
262144

 K5
ij     

+ 15177600
4084223

 K6
ij  + 25200

1891
 K7

ij (18) 
 
Where f(l.) is computed according to (1). There are many 
single step methods available to us for this purpose. But, 
one option worth considering is the combination of two 
methods in solving for the solution.  So we use Rk6(4) 
to make a very efficient computer solving the problem 
the way it evaluates the integral presented. 
 
 
 

5  Simulation Results and 
Comparisons 

 
 
 
 
 
 
Fig.3. Image processing (a) After Averaging 
Template (b) After Averaging and Edge Detection 
  
The simulation time used for comparisons is the 
actual CPU time used. The input image format for 
this simulator is a JPEG format.  
Fig. 3 shows results of the raster simulator obtained 
from a complex image of 65,536(256x256) pixels. 
For this example an Averaging template followed 
by an Edge Detection template were applied to the 
original image to yield the images displayed in Figs. 
3a and 3b, respectively. 
Also in figure 3, it has been shown the quality 
measures of the two pictures in 2a and 2b by using 
the numerical techniques RK4(2),RK4(3) and 
RK6(4) using simulated annealing.  We notice that 
these results are better than those in the literature. 
Since speed is one of the main concerns in the 
simulation, finding the maximum step size that still 
yields convergence for a template can be helpful in 
speeding up the system. The speed-up can be 
achieved by selecting an appropriate ∆t for that 
particular  
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template. Even though the maximum step size may 
slightly vary from one image to another, the values in 
Fig.4 still serve as good references. These results were 
obtained by trial and error over more than 100 
simulations On Lena image with small size  43x64(2752 
pixels).The importance of selecting an appropriate ∆t can 
be easily visualized in Fig. 5. If the step size chosen is 
too small, it might take many iterations, hence longer 
time, to achieve convergence. On the other hand, if the 
step size taken is too large, it might not converge  at all 
or it would converge to erroneous steady state values. 
The results of Fig. 4 were obtained by simulating Lena 
image of size 43x64(2752 pixels) using an Edge 
detection template. We notice that the  CPU time for our 
method is better than those in the literature. 

 
 
 
 
 
 
   
 
   

 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 
6  Conclusion  
As researchers are coming up with more and more 
CNN applications, an efficient and powerful 
simulator is needed. So we use simulated annealing 
in optimizing CNN using the numerical integrations, 
especially using RK4(2),RK4(3) and RK6(4) for 
more efficiency with genetic algorithms.  The 
simulator hereby presented meets the need in six 
ways: 1) Depending on the accuracy required for the 
simulation, the user can choose from three 
numerical methods to perform the numerical 
integration, 2) The input image format is JPEG, 
which is commonly available, 3) The input image 
can be of any size, allowing simulation of images 
available in common practices, 4) CPU time of our 
methods is better than those  in  the literature,   5 ),  
the quality measures of the pictures and the edge 
detection  for our method is better than those in the 
literature  

method 

Mean Square 
Error 

Peak 
Signal to 
Noise 
Ratio 

MNormalized 
Cross-Correlation 

Average 
Difference 

Structural 
Content 

Maximum 
Difference 

Normalized 
Absolute 
Error 

RK4(2) 1.6000e+003 14.4032 0.9745 5.4453 1.2237 223 0.0260 
RK4(3) 1.6350e+003 13.4030 0.9605 5.2236 1.3108 227 0.2200 
RK6(4) 1.6100e+003 11.4033 1.1100 5.0000 0.92200 228 0.2300 

Fig.5. Simulation time comparisons for 4   
different numerical techniques 
for four different templates 

Fig.3. Quality measures of fig.2a and fig.2b 
   

Edge Detection  Averaging   Connected Component 

Fig.4. Maximum step size that still yield  
          convergence for 4 different templates 
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	R.Ponalagusami and S.Senthilkumar introduced Time-Multiplexing CNN using Limiting Formula RK (7,8) (R.Ponalagusami and S.Senthilkumar 2008). In this paper, we consider the same problem but by using  different approaches RK4(2) ,RK4(3) and RK6(4).



